Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval (1607.08477v3)

Published 28 Jul 2016 in cs.CV

Abstract: Hashing methods have been widely used for efficient similarity retrieval on large scale image database. Traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing methods have shown better performance because the deep architectures generate more discriminative feature representations. However, these deep hashing methods are mainly designed for supervised scenarios, which only exploit the semantic similarity information, but ignore the underlying data structures. In this paper, we propose the semi-supervised deep hashing (SSDH) approach, to perform more effective hash function learning by simultaneously preserving semantic similarity and underlying data structures. The main contributions are as follows: (1) We propose a semi-supervised loss to jointly minimize the empirical error on labeled data, as well as the embedding error on both labeled and unlabeled data, which can preserve the semantic similarity and capture the meaningful neighbors on the underlying data structures for effective hashing. (2) A semi-supervised deep hashing network is designed to extensively exploit both labeled and unlabeled data, in which we propose an online graph construction method to benefit from the evolving deep features during training to better capture semantic neighbors. To the best of our knowledge, the proposed deep network is the first deep hashing method that can perform hash code learning and feature learning simultaneously in a semi-supervised fashion. Experimental results on 5 widely-used datasets show that our proposed approach outperforms the state-of-the-art hashing methods.

Citations (124)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)