Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed Model Predictive Control for Linear Systems with Adaptive Terminal Sets (1803.07651v1)

Published 20 Mar 2018 in math.OC, cs.MA, and cs.SY

Abstract: In this paper, we propose a distributed model predictive control (DMPC) scheme for linear time-invariant constrained systems which admit a separable structure. To exploit the merits of distributed computation algorithms, the stabilizing terminal controller, value function and invariant terminal set of the DMPC optimization problem need to respect the loosely coupled structure of the system. Although existing methods in the literature address this task, they typically decouple the synthesis of terminal controllers and value functions from the one of terminal sets. In addition, these approaches do not explicitly consider the effect of the current state of the system in the synthesis process. These limitations can lead the resulting DMPC scheme to poor performance since it may admit small or even empty terminal sets. Unlike other approaches, this paper presents a unified framework to encapsulate the synthesis of both the stabilizing terminal controller and invariant terminal set into the DMPC formulation. Conditions for Lyapunov stability and invariance are imposed in the synthesis problem in a way that allows the value function and invariant terminal set to admit the desired distributed structure. We illustrate the effectiveness of the proposed method on several examples including a benchmark spring-mass-damper problem.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube