Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Robust distributed model predictive control of linear systems: analysis and synthesis (2005.04006v2)

Published 8 May 2020 in eess.SY and cs.SY

Abstract: To provide robustness of distributed model predictive control (DMPC), this work proposes a robust DMPC formulation for discrete-time linear systems subject to unknown-but-bounded disturbances. Taking advantage of the structure of certain classes of distributed systems seen in applications with interagent coupling like vehicle platooning, a novel robust DMPC is formulated. The proposed approach is characterised by separable terminal costs and locally robust terminal sets, with the latter sets adaptively estimated in the online optimisation problem. A constraint tightening approach based on a set-membership approach is used to guarantee constraint satisfaction for coupled subsystems in the presence of disturbances. Under this formulation, the closed-loop system is shown to be recursively feasible and input-to-state stable. To aid in the deployment of the proposed robust DMPC, a possible synthesis method and design conditions for practical implementation are presented. Finally, simulation results with a mass-spring-damper system are provided to demonstrate the proposed robust DMPC.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)