Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the diffusion approximation of nonconvex stochastic gradient descent (1705.07562v2)

Published 22 May 2017 in stat.ML and cs.LG

Abstract: We study the Stochastic Gradient Descent (SGD) method in nonconvex optimization problems from the point of view of approximating diffusion processes. We prove rigorously that the diffusion process can approximate the SGD algorithm weakly using the weak form of master equation for probability evolution. In the small step size regime and the presence of omnidirectional noise, our weak approximating diffusion process suggests the following dynamics for the SGD iteration starting from a local minimizer (resp.~saddle point): it escapes in a number of iterations exponentially (resp.~almost linearly) dependent on the inverse stepsize. The results are obtained using the theory for random perturbations of dynamical systems (theory of large deviations for local minimizers and theory of exiting for unstable stationary points). In addition, we discuss the effects of batch size for the deep neural networks, and we find that small batch size is helpful for SGD algorithms to escape unstable stationary points and sharp minimizers. Our theory indicates that one should increase the batch size at later stage for the SGD to be trapped in flat minimizers for better generalization.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.