Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust video object tracking via Bayesian model averaging based feature fusion (1604.00475v3)

Published 2 Apr 2016 in cs.CV

Abstract: In this article, we are concerned with tracking an object of interest in video stream. We propose an algorithm that is robust against occlusion, the presence of confusing colors, abrupt changes in the object feature space and changes in object size. We develop the algorithm within a Bayesian modeling framework. The state space model is used for capturing the temporal correlation in the sequence of frame images by modeling the underlying dynamics of the tracking system. The Bayesian model averaging (BMA) strategy is proposed for fusing multi-clue information in the observations. Any number of object features are allowed to be involved in the proposed framework. Every feature represents one source of information to be fused and is associated with an observation model. The state inference is performed by employing the particle filter methods. In comparison with related approaches, the BMA based tracker is shown to have robustness, expressivity, and comprehensibility.

Citations (20)

Summary

We haven't generated a summary for this paper yet.