Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Occlusion-aware Visual Tracker using Spatial Structural Information and Dominant Features (2104.07977v1)

Published 16 Apr 2021 in cs.CV

Abstract: To overcome the problem of occlusion in visual tracking, this paper proposes an occlusion-aware tracking algorithm. The proposed algorithm divides the object into discrete image patches according to the pixel distribution of the object by means of clustering. To avoid the drifting of the tracker to false targets, the proposed algorithm extracts the dominant features, such as color histogram or histogram of oriented gradient orientation, from these image patches, and uses them as cues for tracking. To enhance the robustness of the tracker, the proposed algorithm employs an implicit spatial structure between these patches as another cue for tracking; Afterwards, the proposed algorithm incorporates these components into the particle filter framework, which results in a robust and precise tracker. Experimental results on color image sequences with different resolutions show that the proposed tracker outperforms the comparison algorithms on handling occlusion in visual tracking.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.