Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

OCR accuracy improvement on document images through a novel pre-processing approach (1509.03456v1)

Published 11 Sep 2015 in cs.CV

Abstract: Digital camera and mobile document image acquisition are new trends arising in the world of Optical Character Recognition and text detection. In some cases, such process integrates many distortions and produces poorly scanned text or text-photo images and natural images, leading to an unreliable OCR digitization. In this paper, we present a novel nonparametric and unsupervised method to compensate for undesirable document image distortions aiming to optimally improve OCR accuracy. Our approach relies on a very efficient stack of document image enhancing techniques to recover deformation of the entire document image. First, we propose a local brightness and contrast adjustment method to effectively handle lighting variations and the irregular distribution of image illumination. Second, we use an optimized greyscale conversion algorithm to transform our document image to greyscale level. Third, we sharpen the useful information in the resulting greyscale image using Un-sharp Masking method. Finally, an optimal global binarization approach is used to prepare the final document image to OCR recognition. The proposed approach can significantly improve text detection rate and optical character recognition accuracy. To demonstrate the efficiency of our approach, an exhaustive experimentation on a standard dataset is presented.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.