Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Language Independent Single Document Image Super-Resolution using CNN for improved recognition (1701.08835v1)

Published 30 Jan 2017 in cs.CV

Abstract: Recognition of document images have important applications in restoring old and classical texts. The problem involves quality improvement before passing it to a properly trained OCR to get accurate recognition of the text. The image enhancement and quality improvement constitute important steps as subsequent recognition depends upon the quality of the input image. There are scenarios when high resolution images are not available and our experiments show that the OCR accuracy reduces significantly with decrease in the spatial resolution of document images. Thus the only option is to improve the resolution of such document images. The goal is to construct a high resolution image, given a single low resolution binary image, which constitutes the problem of single image super-resolution. Most of the previous work in super-resolution deal with natural images which have more information-content than the document images. Here, we use Convolution Neural Network to learn the mapping between low and the corresponding high resolution images. We experiment with different number of layers, parameter settings and non-linear functions to build a fast end-to-end framework for document image super-resolution. Our proposed model shows a very good PSNR improvement of about 4 dB on 75 dpi Tamil images, resulting in a 3 % improvement of word level accuracy by the OCR. It takes less time than the recent sparse based natural image super-resolution technique, making it useful for real-time document recognition applications.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.