Papers
Topics
Authors
Recent
2000 character limit reached

Is Shafer General Bayes? (1304.2711v1)

Published 27 Mar 2013 in cs.AI

Abstract: This paper examines the relationship between Shafer's belief functions and convex sets of probability distributions. Kyburg's (1986) result showed that belief function models form a subset of the class of closed convex probability distributions. This paper emphasizes the importance of Kyburg's result by looking at simple examples involving Bernoulli trials. Furthermore, it is shown that many convex sets of probability distributions generate the same belief function in the sense that they support the same lower and upper values. This has implications for a decision theoretic extension. Dempster's rule of combination is also compared with Bayes' rule of conditioning.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.