Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Basic Formal Properties of A Relational Model of The Mathematical Theory of Evidence (1704.02468v1)

Published 8 Apr 2017 in cs.AI

Abstract: The paper presents a novel view of the Dempster-Shafer belief function as a measure of diversity in relational data bases. It is demonstrated that under the interpretation The Dempster rule of evidence combination corresponds to the join operator of the relational database theory. This rough-set based interpretation is qualitative in nature and can represent a number of belief function operators. The interpretation has the property that Given a definition of the belief measure of objects in the interpretation domain we can perform operations in this domain and the measure of the resulting object is derivable from measures of component objects via belief operator. We demonstrated this property for Dempster rule of combination, marginalization, Shafer's conditioning, independent variables, Shenoy's notion of conditional independence of variables. The interpretation is based on rough sets (in connection with decision tables), but differs from previous interpretations of this type in that it counts the diversity rather than frequencies in a decision table.

Summary

We haven't generated a summary for this paper yet.