Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Scalable Null Model for Directed Graphs Matching All Degree Distributions: In, Out, and Reciprocal (1210.5288v4)

Published 19 Oct 2012 in cs.SI and physics.soc-ph

Abstract: Degree distributions are arguably the most important property of real world networks. The classic edge configuration model or Chung-Lu model can generate an undirected graph with any desired degree distribution. This serves as a good null model to compare algorithms or perform experimental studies. Furthermore, there are scalable algorithms that implement these models and they are invaluable in the study of graphs. However, networks in the real-world are often directed, and have a significant proportion of reciprocal edges. A stronger relation exists between two nodes when they each point to one another (reciprocal edge) as compared to when only one points to the other (one-way edge). Despite their importance, reciprocal edges have been disregarded by most directed graph models. We propose a null model for directed graphs inspired by the Chung-Lu model that matches the in-, out-, and reciprocal-degree distributions of the real graphs. Our algorithm is scalable and requires $O(m)$ random numbers to generate a graph with $m$ edges. We perform a series of experiments on real datasets and compare with existing graph models.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.