Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generating large scale-free networks with the Chung-Lu random graph model (1910.11341v3)

Published 24 Oct 2019 in physics.soc-ph and cs.SI

Abstract: Random graph models are a recurring tool-of-the-trade for studying network structural properties and benchmarking community detection and other network algorithms. Moreover, they serve as test-bed generators for studying diffusion and routing processes on networks. In this paper, we illustrate how to generate large random graphs having a power-law degree distribution using the Chung--Lu model. In particular, we are concerned with the fulfilment of a fundamental hypothesis that must be placed on the model parameters, without which the generated graphs lose all the theoretical properties of the model, notably, the controllability of the expected node degrees and the absence of correlations between the degrees of two nodes joined by an edge. We provide explicit formulas for the model parameters to generate random graphs that have several desirable properties, including a power-law degree distribution with any exponent larger than $2$, a prescribed asymptotic behaviour of the largest and average expected degrees, and the presence of a giant component.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.