Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Compact Weighted Class Association Rule Mining using Information Gain (1112.2137v1)

Published 9 Dec 2011 in cs.DB

Abstract: Weighted association rule mining reflects semantic significance of item by considering its weight. Classification constructs the classifier and predicts the new data instance. This paper proposes compact weighted class association rule mining method, which applies weighted association rule mining in the classification and constructs an efficient weighted associative classifier. This proposed associative classification algorithm chooses one non class informative attribute from dataset and all the weighted class association rules are generated based on that attribute. The weight of the item is considered as one of the parameter in generating the weighted class association rules. This proposed algorithm calculates the weight using the HITS model. Experimental results show that the proposed system generates less number of high quality rules which improves the classification accuracy.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.