Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Optimized Weighted Association Rule Mining On Dynamic Content (1004.3565v1)

Published 20 Apr 2010 in cs.DB

Abstract: Association rule mining aims to explore large transaction databases for association rules. Classical Association Rule Mining (ARM) model assumes that all items have the same significance without taking their weight into account. It also ignores the difference between the transactions and importance of each and every itemsets. But, the Weighted Association Rule Mining (WARM) does not work on databases with only binary attributes. It makes use of the importance of each itemset and transaction. WARM requires each item to be given weight to reflect their importance to the user. The weights may correspond to special promotions on some products, or the profitability of different items. This research work first focused on a weight assignment based on a directed graph where nodes denote items and links represent association rules. A generalized version of HITS is applied to the graph to rank the items, where all nodes and links are allowed to have weights. This research then uses enhanced HITS algorithm by developing an online eigenvector calculation method that can compute the results of mutual reinforcement voting in case of frequent updates. For Example in Share Market Shares price may go down or up. So we need to carefully watch the market and our association rule mining has to produce the items that have undergone frequent changes. These are done by estimating the upper bound of perturbation and postponing of the updates whenever possible. Next we prove that enhanced algorithm is more efficient than the original HITS under the context of dynamic data.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube