Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AutoM3L: An Automated Multimodal Machine Learning Framework with Large Language Models (2408.00665v1)

Published 1 Aug 2024 in cs.LG

Abstract: Automated Machine Learning (AutoML) offers a promising approach to streamline the training of machine learning models. However, existing AutoML frameworks are often limited to unimodal scenarios and require extensive manual configuration. Recent advancements in LLMs have showcased their exceptional abilities in reasoning, interaction, and code generation, presenting an opportunity to develop a more automated and user-friendly framework. To this end, we introduce AutoM3L, an innovative Automated Multimodal Machine Learning framework that leverages LLMs as controllers to automatically construct multimodal training pipelines. AutoM3L comprehends data modalities and selects appropriate models based on user requirements, providing automation and interactivity. By eliminating the need for manual feature engineering and hyperparameter optimization, our framework simplifies user engagement and enables customization through directives, addressing the limitations of previous rule-based AutoML approaches. We evaluate the performance of AutoM3L on six diverse multimodal datasets spanning classification, regression, and retrieval tasks, as well as a comprehensive set of unimodal datasets. The results demonstrate that AutoM3L achieves competitive or superior performance compared to traditional rule-based AutoML methods. Furthermore, a user study highlights the user-friendliness and usability of our framework, compared to the rule-based AutoML methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube