Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Few-shot Defect Image Generation based on Consistency Modeling (2408.00372v1)

Published 1 Aug 2024 in cs.CV

Abstract: Image generation can solve insufficient labeled data issues in defect detection. Most defect generation methods are only trained on a single product without considering the consistencies among multiple products, leading to poor quality and diversity of generated results. To address these issues, we propose DefectDiffu, a novel text-guided diffusion method to model both intra-product background consistency and inter-product defect consistency across multiple products and modulate the consistency perturbation directions to control product type and defect strength, achieving diversified defect image generation. Firstly, we leverage a text encoder to separately provide consistency prompts for background, defect, and fusion parts of the disentangled integrated architecture, thereby disentangling defects and normal backgrounds. Secondly, we propose the double-free strategy to generate defect images through two-stage perturbation of consistency direction, thereby controlling product type and defect strength by adjusting the perturbation scale. Besides, DefectDiffu can generate defect mask annotations utilizing cross-attention maps from the defect part. Finally, to improve the generation quality of small defects and masks, we propose the adaptive attention-enhance loss to increase the attention to defects. Experimental results demonstrate that DefectDiffu surpasses state-of-the-art methods in terms of generation quality and diversity, thus effectively improving downstream defection performance. Moreover, defect perturbation directions can be transferred among various products to achieve zero-shot defect generation, which is highly beneficial for addressing insufficient data issues. The code are available at https://github.com/FFDD-diffusion/DefectDiffu.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com