Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Autonomous LLM-Enhanced Adversarial Attack for Text-to-Motion (2408.00352v1)

Published 1 Aug 2024 in cs.CV

Abstract: Human motion generation driven by deep generative models has enabled compelling applications, but the ability of text-to-motion (T2M) models to produce realistic motions from text prompts raises security concerns if exploited maliciously. Despite growing interest in T2M, few methods focus on safeguarding these models against adversarial attacks, with existing work on text-to-image models proving insufficient for the unique motion domain. In the paper, we propose ALERT-Motion, an autonomous framework leveraging LLMs to craft targeted adversarial attacks against black-box T2M models. Unlike prior methods modifying prompts through predefined rules, ALERT-Motion uses LLMs' knowledge of human motion to autonomously generate subtle yet powerful adversarial text descriptions. It comprises two key modules: an adaptive dispatching module that constructs an LLM-based agent to iteratively refine and search for adversarial prompts; and a multimodal information contrastive module that extracts semantically relevant motion information to guide the agent's search. Through this LLM-driven approach, ALERT-Motion crafts adversarial prompts querying victim models to produce outputs closely matching targeted motions, while avoiding obvious perturbations. Evaluations across popular T2M models demonstrate ALERT-Motion's superiority over previous methods, achieving higher attack success rates with stealthier adversarial prompts. This pioneering work on T2M adversarial attacks highlights the urgency of developing defensive measures as motion generation technology advances, urging further research into safe and responsible deployment.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube