Monotonicity, bounds and extrapolation of Block-Gauss and Gauss-Radau quadrature for computing $B^T φ(A) B$ (2407.21505v2)
Abstract: In this paper, we explore quadratures for the evaluation of $BT \phi(A) B$ where $A$ is a symmetric nonnegative-definite matrix in $\mathbb{R}{n \times n}$, $B$ is a tall matrix in $\mathbb{R}{n \times p}$, and $\phi(\cdot)$ represents a matrix function that is regular enough in the neighborhood of $A$'s spectrum, e.g., a Stieltjes or exponential function. These formulations, for example, commonly arise in the computation of multiple-input multiple-output (MIMO) transfer functions for diffusion PDEs. We propose an approximation scheme for $BT \phi(A) B$ leveraging the block Lanczos algorithm and its equivalent representation through Stieltjes matrix continued fractions. We extend the notion of Gauss-Radau quadrature to the block case, facilitating the derivation of easily computable error bounds. For problems stemming from the discretization of self-adjoint operators with a continuous spectrum, we obtain sharp estimates grounded in potential theory for Pad\'e approximations and justify extrapolation algorithms at no added computational cost. The obtained results are illustrated on large-scale examples of 2D diffusion and 3D Maxwell's equations as well as a graph from the SNAP repository. We also present promising experimental results on convergence acceleration via random enrichment of the initial block $B$.
- arXiv preprint arXiv:2303.03358 (2023)
- Encyclopedia of Mathematics and its Applications. Cambridge University Press (1996)
- Linear Algebra and its Applications 433(3), 637–652 (2010). DOI https://doi.org/10.1016/j.laa.2010.03.035. URL https://www.sciencedirect.com/science/article/pii/S002437951000162X
- GAMM‐Mitteilungen 43 (2020). URL https://api.semanticscholar.org/CorpusID:225328452
- BIT Numerical Mathematics 39, 417 –438 (1999)
- Phys. Rev. Lett. 65, 325–328 (1990). DOI 10.1103/PhysRevLett.65.325. URL https://link.aps.org/doi/10.1103/PhysRevLett.65.325
- Druskin, V.: On monotonicity of the Lanczos approximation to the matrix exponential. Linear Algebra and its Applications 429(7), 1679–1683 (2008). DOI https://doi.org/10.1016/j.laa.2008.04.046. URL https://www.sciencedirect.com/science/article/pii/S0024379508002425
- SIAM Journal on Scientific Computing 19(1), 38–54 (1998)
- SIAM Review 58(1), 90–116 (2016)
- Phys. Sol. Earth 24, 641–648 (1988)
- Numerical linear algebra with applications 2(3), 205–217 (1995)
- Multiscale Modeling & Simulation 15(1), 445–475 (2017). DOI 10.1137/16M1072103
- Journal of Scientific Computing 90(1), 32 (2022)
- Dyukarev, Y.M.: Indeterminacy criteria for the Stieltjes matrix moment problem. Mathematical Notes 75, 66–82 (2004)
- Mathematical Notes 91, 493–499 (2012)
- SIAM Journal on Matrix Analysis and Applications 34(4), 1655–1684 (2013). DOI 10.1137/120886261. URL https://doi.org/10.1137/120886261
- Frommer, A.: Monotone convergence of the Lanczos approximations to matrix functions of Hermitian matrices. Electronic Transactions on Numerical Analysis 35, 118–128 (2009)
- Springer-Verlag, Berlin, Heidelberg (2009)
- In: J.R. Rice (ed.) Mathematical Software, pp. 361–377. Academic Press (1977). DOI https://doi.org/10.1016/B978-0-12-587260-7.50018-2. URL https://www.sciencedirect.com/science/article/pii/B9780125872607500182
- Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra and its Applications 113, 7–63 (1989). DOI https://doi.org/10.1016/0024-3795(89)90285-1. URL https://www.sciencedirect.com/science/article/pii/0024379589902851
- Ingerman, D.: Discrete and continuous Dirichlet-to-Neumann maps in the layered case. SIAM Journal on Mathematical Analysis 31(6), 1214–1234 (2000). DOI 10.1137/S0036141097326581
- Communications on Pure and Applied Mathematics 53(8), 1039–1066 (2000). DOI https://doi.org/10.1002/1097-0312(200008)53:8¡1039::AID-CPA4¿3.0.CO;2-I
- Jones, R.: The recursion method with a non-orthogonal basis. In: D.G. Pettifor, D.L. Weaire (eds.) The Recursion Method and Its Applications, pp. 132–137. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)
- Knizhnerman, L.A.: The simple Lanczos procedure: estimates of the error of the Gauss quadrature formula and their applications. Computational Mathematics and Mathematical Physics 36, 1481–1492 (1996). URL https://api.semanticscholar.org/CorpusID:123920348
- http://snap.stanford.edu/data (2014)
- Linear Algebra and its Applications 429(10), 2540–2554 (2008). DOI https://doi.org/10.1016/j.laa.2008.04.047. URL https://www.sciencedirect.com/science/article/pii/S0024379508002401. Special Issue in honor of Richard S. Varga
- Numerical Algorithms 94(2), 847–876 (2023). DOI 10.1007/s11075-023-01522-z. URL https://doi.org/10.1007/s11075-023-01522-z
- Society for Industrial and Applied Mathematics, Philadelphia, PA (2024). DOI 10.1137/1.9781611977868. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611977868
- O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra and its Applications 29, 293–322 (1980). DOI https://doi.org/10.1016/0024-3795(80)90247-5. Special Volume Dedicated to Alson S. Householder
- In: SPWLA Annual Logging Symposium, p. D041S013R005. SPWLA (2024)
- Jörn Zimmerling (14 papers)
- Vladimir Druskin (26 papers)
- Valeria Simoncini (35 papers)