Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monotonicity, bounds and extrapolation of Block-Gauss and Gauss-Radau quadrature for computing $B^T φ(A) B$ (2407.21505v2)

Published 31 Jul 2024 in math.NA and cs.NA

Abstract: In this paper, we explore quadratures for the evaluation of $BT \phi(A) B$ where $A$ is a symmetric nonnegative-definite matrix in $\mathbb{R}{n \times n}$, $B$ is a tall matrix in $\mathbb{R}{n \times p}$, and $\phi(\cdot)$ represents a matrix function that is regular enough in the neighborhood of $A$'s spectrum, e.g., a Stieltjes or exponential function. These formulations, for example, commonly arise in the computation of multiple-input multiple-output (MIMO) transfer functions for diffusion PDEs. We propose an approximation scheme for $BT \phi(A) B$ leveraging the block Lanczos algorithm and its equivalent representation through Stieltjes matrix continued fractions. We extend the notion of Gauss-Radau quadrature to the block case, facilitating the derivation of easily computable error bounds. For problems stemming from the discretization of self-adjoint operators with a continuous spectrum, we obtain sharp estimates grounded in potential theory for Pad\'e approximations and justify extrapolation algorithms at no added computational cost. The obtained results are illustrated on large-scale examples of 2D diffusion and 3D Maxwell's equations as well as a graph from the SNAP repository. We also present promising experimental results on convergence acceleration via random enrichment of the initial block $B$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. arXiv preprint arXiv:2303.03358 (2023)
  2. Encyclopedia of Mathematics and its Applications. Cambridge University Press (1996)
  3. Linear Algebra and its Applications 433(3), 637–652 (2010). DOI https://doi.org/10.1016/j.laa.2010.03.035. URL https://www.sciencedirect.com/science/article/pii/S002437951000162X
  4. GAMM‐Mitteilungen 43 (2020). URL https://api.semanticscholar.org/CorpusID:225328452
  5. BIT Numerical Mathematics 39, 417 –438 (1999)
  6. Phys. Rev. Lett. 65, 325–328 (1990). DOI 10.1103/PhysRevLett.65.325. URL https://link.aps.org/doi/10.1103/PhysRevLett.65.325
  7. Druskin, V.: On monotonicity of the Lanczos approximation to the matrix exponential. Linear Algebra and its Applications 429(7), 1679–1683 (2008). DOI https://doi.org/10.1016/j.laa.2008.04.046. URL https://www.sciencedirect.com/science/article/pii/S0024379508002425
  8. SIAM Journal on Scientific Computing 19(1), 38–54 (1998)
  9. SIAM Review 58(1), 90–116 (2016)
  10. Phys. Sol. Earth 24, 641–648 (1988)
  11. Numerical linear algebra with applications 2(3), 205–217 (1995)
  12. Multiscale Modeling & Simulation 15(1), 445–475 (2017). DOI 10.1137/16M1072103
  13. Journal of Scientific Computing 90(1), 32 (2022)
  14. Dyukarev, Y.M.: Indeterminacy criteria for the Stieltjes matrix moment problem. Mathematical Notes 75, 66–82 (2004)
  15. Mathematical Notes 91, 493–499 (2012)
  16. SIAM Journal on Matrix Analysis and Applications 34(4), 1655–1684 (2013). DOI 10.1137/120886261. URL https://doi.org/10.1137/120886261
  17. Frommer, A.: Monotone convergence of the Lanczos approximations to matrix functions of Hermitian matrices. Electronic Transactions on Numerical Analysis 35, 118–128 (2009)
  18. Springer-Verlag, Berlin, Heidelberg (2009)
  19. In: J.R. Rice (ed.) Mathematical Software, pp. 361–377. Academic Press (1977). DOI https://doi.org/10.1016/B978-0-12-587260-7.50018-2. URL https://www.sciencedirect.com/science/article/pii/B9780125872607500182
  20. Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra and its Applications 113, 7–63 (1989). DOI https://doi.org/10.1016/0024-3795(89)90285-1. URL https://www.sciencedirect.com/science/article/pii/0024379589902851
  21. Ingerman, D.: Discrete and continuous Dirichlet-to-Neumann maps in the layered case. SIAM Journal on Mathematical Analysis 31(6), 1214–1234 (2000). DOI 10.1137/S0036141097326581
  22. Communications on Pure and Applied Mathematics 53(8), 1039–1066 (2000). DOI https://doi.org/10.1002/1097-0312(200008)53:8¡1039::AID-CPA4¿3.0.CO;2-I
  23. Jones, R.: The recursion method with a non-orthogonal basis. In: D.G. Pettifor, D.L. Weaire (eds.) The Recursion Method and Its Applications, pp. 132–137. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)
  24. Knizhnerman, L.A.: The simple Lanczos procedure: estimates of the error of the Gauss quadrature formula and their applications. Computational Mathematics and Mathematical Physics 36, 1481–1492 (1996). URL https://api.semanticscholar.org/CorpusID:123920348
  25. http://snap.stanford.edu/data (2014)
  26. Linear Algebra and its Applications 429(10), 2540–2554 (2008). DOI https://doi.org/10.1016/j.laa.2008.04.047. URL https://www.sciencedirect.com/science/article/pii/S0024379508002401. Special Issue in honor of Richard S. Varga
  27. Numerical Algorithms 94(2), 847–876 (2023). DOI 10.1007/s11075-023-01522-z. URL https://doi.org/10.1007/s11075-023-01522-z
  28. Society for Industrial and Applied Mathematics, Philadelphia, PA (2024). DOI 10.1137/1.9781611977868. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611977868
  29. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra and its Applications 29, 293–322 (1980). DOI https://doi.org/10.1016/0024-3795(80)90247-5. Special Volume Dedicated to Alson S. Householder
  30. In: SPWLA Annual Logging Symposium, p. D041S013R005. SPWLA (2024)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jörn Zimmerling (14 papers)
  2. Vladimir Druskin (26 papers)
  3. Valeria Simoncini (35 papers)

Summary

We haven't generated a summary for this paper yet.