Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Design and Development of Laughter Recognition System Based on Multimodal Fusion and Deep Learning (2407.21391v1)

Published 31 Jul 2024 in cs.SD, cs.CV, cs.MM, and eess.AS

Abstract: This study aims to design and implement a laughter recognition system based on multimodal fusion and deep learning, leveraging image and audio processing technologies to achieve accurate laughter recognition and emotion analysis. First, the system loads video files and uses the OpenCV library to extract facial information while employing the Librosa library to process audio features such as MFCC. Then, multimodal fusion techniques are used to integrate image and audio features, followed by training and prediction using deep learning models. Evaluation results indicate that the model achieved 80% accuracy, precision, and recall on the test dataset, with an F1 score of 80%, demonstrating robust performance and the ability to handle real-world data variability. This study not only verifies the effectiveness of multimodal fusion methods in laughter recognition but also highlights their potential applications in affective computing and human-computer interaction. Future work will focus on further optimizing feature extraction and model architecture to improve recognition accuracy and expand application scenarios, promoting the development of laughter recognition technology in fields such as mental health monitoring and educational activity evaluation

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)