Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Completely Parameter-Free Single-Loop Algorithms for Nonconvex-Concave Minimax Problems (2407.21372v3)

Published 31 Jul 2024 in math.OC, cs.LG, and stat.ML

Abstract: Due to their importance in various emerging applications, efficient algorithms for solving minimax problems have recently received increasing attention. However, many existing algorithms require prior knowledge of the problem parameters in order to achieve optimal iteration complexity. In this paper, three completely parameter-free single-loop algorithms, namely PF-AGP-NSC algorithm, PF-AGP-NC algorithm and PF-AGP-NL algorithm, are proposed to solve the smooth nonconvex-strongly concave, nonconvex-concave minimax problems and nonconvex-linear minimax problems respectively using line search without requiring any prior knowledge about parameters such as the Lipschtiz constant $L$ or the strongly concave modulus $\mu$. Furthermore, we prove that the total number of gradient calls required to obtain an $\varepsilon$-stationary point for the PF-AGP-NSC algorithm, the PF-AGP-NC algorithm, and the PF-AGP-NL algorithm are upper bounded by $\mathcal{O}\left( L2\kappa3\varepsilon{-2} \right)$, $\mathcal{O}\left( \log2(L)L4\varepsilon{-4} \right)$, and $\mathcal{O}\left( L3\varepsilon{-3} \right)$, respectively, where $\kappa$ is the condition number. To the best of our knowledge, PF-AGP-NC and PF-AGP-NL are the first completely parameter-free algorithms for solving nonconvex-concave and nonconvex-linear minimax problems, respectively. PF-AGP-NSC is a completely parameter-free algorithm for solving nonconvex-strongly concave minimax problems, achieving the best known complexity with respect to $\varepsilon$. Numerical results demonstrate the efficiency of the three proposed algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: