Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Pathology Foundation Models (2407.21317v2)

Published 31 Jul 2024 in cs.CV

Abstract: Pathology has played a crucial role in the diagnosis and evaluation of patient tissue samples obtained from surgeries and biopsies for many years. The advent of Whole Slide Scanners and the development of deep learning technologies have significantly advanced the field, leading to extensive research and development in pathology AI (Artificial Intelligence). These advancements have contributed to reducing the workload of pathologists and supporting decision-making in treatment plans. Recently, large-scale AI models known as Foundation Models (FMs), which are more accurate and applicable to a wide range of tasks compared to traditional AI, have emerged, and expanded their application scope in the healthcare field. Numerous FMs have been developed in pathology, and there are reported cases of their application in various tasks, such as disease diagnosis, rare cancer diagnosis, patient survival prognosis prediction, biomarker expression prediction, and the scoring of immunohistochemical expression intensity. However, several challenges remain for the clinical application of FMs, which healthcare professionals, as users, must be aware of. Research is ongoing to address these challenges. In the future, it is expected that the development of Generalist Medical AI, which integrates pathology FMs with FMs from other medical domains, will progress, leading to the effective utilization of AI in real clinical settings to promote precision and personalized medicine.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: