Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rolling in the deep of cognitive and AI biases (2407.21202v1)

Published 30 Jul 2024 in cs.AI and cs.CY

Abstract: Nowadays, we delegate many of our decisions to AI that acts either in solo or as a human companion in decisions made to support several sensitive domains, like healthcare, financial services and law enforcement. AI systems, even carefully designed to be fair, are heavily criticized for delivering misjudged and discriminated outcomes against individuals and groups. Numerous work on AI algorithmic fairness is devoted on Machine Learning pipelines which address biases and quantify fairness under a pure computational view. However, the continuous unfair and unjust AI outcomes, indicate that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed. Although, the synergy of humans and machines seems imperative to make AI work, the significant impact of human and societal factors on AI bias is currently overlooked. We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview. Inspired by the cognitive science definition and taxonomy of human heuristics, we identify how harmful human actions influence the overall AI lifecycle, and reveal human to AI biases hidden pathways. We introduce a new mapping, which justifies the human heuristics to AI biases reflections and we detect relevant fairness intensities and inter-dependencies. We envision that this approach will contribute in revisiting AI fairness under deeper human-centric case studies, revealing hidden biases cause and effects.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com