Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Optical Computing for Deep Neural Network Acceleration: Foundations, Recent Developments, and Emerging Directions (2407.21184v1)

Published 30 Jul 2024 in cs.AR and cs.LG

Abstract: Emerging artificial intelligence applications across the domains of computer vision, natural language processing, graph processing, and sequence prediction increasingly rely on deep neural networks (DNNs). These DNNs require significant compute and memory resources for training and inference. Traditional computing platforms such as CPUs, GPUs, and TPUs are struggling to keep up with the demands of the increasingly complex and diverse DNNs. Optical computing represents an exciting new paradigm for light-speed acceleration of DNN workloads. In this article, we discuss the fundamentals and state-of-the-art developments in optical computing, with an emphasis on DNN acceleration. Various promising approaches are described for engineering optical devices, enhancing optical circuits, and designing architectures that can adapt optical computing to a variety of DNN workloads. Novel techniques for hardware/software co-design that can intelligently tune and map DNN models to improve performance and energy-efficiency on optical computing platforms across high performance and resource constrained embedded, edge, and IoT platforms are also discussed. Lastly, several open problems and future directions for research in this domain are highlighted.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: