Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian (2407.20654v1)

Published 30 Jul 2024 in cs.CL and cs.AI

Abstract: Addressing the challenge of limited annotated data in specialized fields and low-resource languages is crucial for the effective use of LLMs (LMs). While most LLMs are trained on general-purpose English corpora, there is a notable gap in models specifically tailored for Italian, particularly for technical and bureaucratic jargon. This paper explores the feasibility of employing smaller, domain-specific encoder LMs alongside prompting techniques to enhance performance in these specialized contexts. Our study concentrates on the Italian bureaucratic and legal language, experimenting with both general-purpose and further pre-trained encoder-only models. We evaluated the models on downstream tasks such as document classification and entity typing and conducted intrinsic evaluations using Pseudo-Log-Likelihood. The results indicate that while further pre-trained models may show diminished robustness in general knowledge, they exhibit superior adaptability for domain-specific tasks, even in a zero-shot setting. Furthermore, the application of calibration techniques and in-domain verbalizers significantly enhances the efficacy of encoder models. These domain-specialized models prove to be particularly advantageous in scenarios where in-domain resources or expertise are scarce. In conclusion, our findings offer new insights into the use of Italian models in specialized contexts, which may have a significant impact on both research and industrial applications in the digital transformation era.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.