Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models (2407.20271v3)

Published 25 Jul 2024 in cs.LG, cs.AI, and cs.CL

Abstract: Recent advances in machine learning, particularly in NLP, have produced powerful models trained on vast datasets. However, these models risk leaking sensitive information, raising privacy concerns. In response, regulatory measures such as the European Union's General Data Protection Regulation (GDPR) have driven increasing interest in Machine Unlearning techniques, which enable models to selectively forget specific data entries. Early unlearning approaches primarily relied on pre-processing methods, while more recent research has shifted towards training-based solutions. Despite their effectiveness, a key limitation persists: most methods require access to original training data, which is often unavailable. Additionally, directly applying unlearning techniques bears the cost of undermining the model's expressive capabilities. To address these challenges, we introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components: A Knowledge Unlearning Induction module designed to target specific knowledge for removal using an unlearning loss; A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal; And an Iterative Unlearning Refinement module that dynamically adjusts the unlearning process through ongoing evaluation and updates. Experimental results demonstrate the efficacy of our ICU method in unlearning sensitive information while maintaining the model's overall performance, offering a promising solution for privacy-conscious machine learning applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.