Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models (2407.20271v3)

Published 25 Jul 2024 in cs.LG, cs.AI, and cs.CL

Abstract: Recent advances in machine learning, particularly in NLP, have produced powerful models trained on vast datasets. However, these models risk leaking sensitive information, raising privacy concerns. In response, regulatory measures such as the European Union's General Data Protection Regulation (GDPR) have driven increasing interest in Machine Unlearning techniques, which enable models to selectively forget specific data entries. Early unlearning approaches primarily relied on pre-processing methods, while more recent research has shifted towards training-based solutions. Despite their effectiveness, a key limitation persists: most methods require access to original training data, which is often unavailable. Additionally, directly applying unlearning techniques bears the cost of undermining the model's expressive capabilities. To address these challenges, we introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components: A Knowledge Unlearning Induction module designed to target specific knowledge for removal using an unlearning loss; A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal; And an Iterative Unlearning Refinement module that dynamically adjusts the unlearning process through ongoing evaluation and updates. Experimental results demonstrate the efficacy of our ICU method in unlearning sensitive information while maintaining the model's overall performance, offering a promising solution for privacy-conscious machine learning applications.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.