Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Fairness Through Controlled (Un)Awareness in Node Embeddings (2407.20024v1)

Published 29 Jul 2024 in cs.SI and cs.CY

Abstract: Graph representation learning is central for the application of ML models to complex graphs, such as social networks. Ensuring `fair' representations is essential, due to the societal implications and the use of sensitive personal data. In this paper, we demonstrate how the parametrization of the \emph{CrossWalk} algorithm influences the ability to infer a sensitive attributes from node embeddings. By fine-tuning hyperparameters, we show that it is possible to either significantly enhance or obscure the detectability of these attributes. This functionality offers a valuable tool for improving the fairness of ML systems utilizing graph embeddings, making them adaptable to different fairness paradigms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.