Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MambaGesture: Enhancing Co-Speech Gesture Generation with Mamba and Disentangled Multi-Modality Fusion (2407.19976v2)

Published 29 Jul 2024 in cs.HC and cs.MM

Abstract: Co-speech gesture generation is crucial for producing synchronized and realistic human gestures that accompany speech, enhancing the animation of lifelike avatars in virtual environments. While diffusion models have shown impressive capabilities, current approaches often overlook a wide range of modalities and their interactions, resulting in less dynamic and contextually varied gestures. To address these challenges, we present MambaGesture, a novel framework integrating a Mamba-based attention block, MambaAttn, with a multi-modality feature fusion module, SEAD. The MambaAttn block combines the sequential data processing strengths of the Mamba model with the contextual richness of attention mechanisms, enhancing the temporal coherence of generated gestures. SEAD adeptly fuses audio, text, style, and emotion modalities, employing disentanglement to deepen the fusion process and yield gestures with greater realism and diversity. Our approach, rigorously evaluated on the multi-modal BEAT dataset, demonstrates significant improvements in Fr\'echet Gesture Distance (FGD), diversity scores, and beat alignment, achieving state-of-the-art performance in co-speech gesture generation. Project website: $\href{https://fcchit.github.io/mambagesture/}{\textit{https://fcchit.github.io/mambagesture/}}$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.