Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Integrated Scenario-based Analysis: A data-driven approach to support automated driving systems development and safety evaluation (2407.19975v1)

Published 29 Jul 2024 in cs.RO and stat.AP

Abstract: Several scenario-based frameworks exist to aid in vehicle system development and safety assurance. However, there is a need for approaches that combine different types of datasets that offer varying levels of case severity, data richness, and representativeness. This study presents an integrated scenario-based analysis approach that encompasses scenario definition, fusion, parametrization, and test case generation. For this process, ten years of fatal and non-fatal national crash data from the United States are combined with over 34 million miles of naturalistic driving data. An illustrative example scenario, "turns at intersection", is chosen to demonstrate this approach. First, scenario definitions are established from both record-based and continuous time series data. Second, a frequency analysis is performed to understand how often events from the same scenario occur at different severities across datasets. Third, an analysis is performed to show the key factors relevant to the scenario and the distribution of various parameters. Finally, a method to combine both types of data into representative test case scenarios is presented. These techniques improve scenario representativeness in two major ways: first, they populate an entire spectrum of cases ranging from routine events to fatal crashes; and second, they provide context-rich, multi-year data by combining large-scale national and naturalistic datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: