Papers
Topics
Authors
Recent
Search
2000 character limit reached

BEExAI: Benchmark to Evaluate Explainable AI

Published 29 Jul 2024 in cs.LG, cs.AI, and cs.CL | (2407.19897v1)

Abstract: Recent research in explainability has given rise to numerous post-hoc attribution methods aimed at enhancing our comprehension of the outputs of black-box machine learning models. However, evaluating the quality of explanations lacks a cohesive approach and a consensus on the methodology for deriving quantitative metrics that gauge the efficacy of explainability post-hoc attribution methods. Furthermore, with the development of increasingly complex deep learning models for diverse data applications, the need for a reliable way of measuring the quality and correctness of explanations is becoming critical. We address this by proposing BEExAI, a benchmark tool that allows large-scale comparison of different post-hoc XAI methods, employing a set of selected evaluation metrics.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.