Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability (2407.19842v1)

Published 29 Jul 2024 in cs.LG, cs.CL, and cs.CR

Abstract: LLMs, characterized by being trained on broad amounts of data in a self-supervised manner, have shown impressive performance across a wide range of tasks. Indeed, their generative abilities have aroused interest on the application of LLMs across a wide range of contexts. However, neural networks in general, and LLMs in particular, are known to be vulnerable to adversarial attacks, where an imperceptible change to the input can mislead the output of the model. This is a serious concern that impedes the use of LLMs on high-stakes applications, such as healthcare, where a wrong prediction can imply serious consequences. Even though there are many efforts on making LLMs more robust to adversarial attacks, there are almost no works that study \emph{how} and \emph{where} these vulnerabilities that make LLMs prone to adversarial attacks happen. Motivated by these facts, we explore how to localize and understand vulnerabilities, and propose a method, based on Mechanistic Interpretability (MI) techniques, to guide this process. Specifically, this method enables us to detect vulnerabilities related to a concrete task by (i) obtaining the subset of the model that is responsible for that task, (ii) generating adversarial samples for that task, and (iii) using MI techniques together with the previous samples to discover and understand the possible vulnerabilities. We showcase our method on a pretrained GPT-2 Small model carrying out the task of predicting 3-letter acronyms to demonstrate its effectiveness on locating and understanding concrete vulnerabilities of the model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.