Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Causally Informed Pretraining Approach for Multimodal Foundation Models: Applications in Remote Sensing (2407.19660v3)

Published 29 Jul 2024 in cs.CV and cs.LG

Abstract: Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data. Existing pretraining approaches predominantly rely on masked reconstruction or next-token prediction strategies, demonstrating strong performance across various downstream tasks, including geoscience applications. However, these approaches do not fully capture the causal interplay between different geospatial and environmental variables. To address this limitation, we propose Causally Informed Variable-Step Forecasting (CI-VSF), a novel pretraining task that models forecasting as a conditional generation task, where driver variables (e.g., weather) inform the prediction of response variables (e.g., satellite imagery). We demonstrate that pretraining in such a fashion leads to enhanced performance when finetuned on both prediction (e.g., crop mapping, missing image prediction, soil moisture estimation) and forecasting (e.g., future image forecasting, soil moisture forecasting) downstream tasks when compared to other pretraining approaches. While we use remote sensing as our main application to demonstrate the efficacy of our proposed pretraining strategy over existing paradigms, it is applicable to any domain that involves known causal relationships amongst a set of variables.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.