Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

To Spike or Not to Spike, that is the Question (2407.19566v3)

Published 28 Jul 2024 in cs.ET and cs.NE

Abstract: Neuromorphic computing has recently gained momentum with the emergence of various neuromorphic processors. As the field advances, there is an increasing focus on developing training methods that can effectively leverage the unique properties of spiking neural networks (SNNs). SNNs emulate the temporal dynamics of biological neurons, making them particularly well-suited for real-time, event-driven processing. To fully harness the potential of SNNs across different neuromorphic platforms, effective training methodologies are essential. In SNNs, learning rules are based on neurons' spiking behavior, that is, if and when spikes are generated due to a neuron's membrane potential exceeding that neuron's spiking threshold, and this spike timing encodes vital information. However, the threshold is generally treated as a hyperparameter, and incorrect selection can lead to neurons that do not spike for large portions of the training process, hindering the effective rate of learning. This work focuses on the significance of learning neuron thresholds alongside weights in SNNs. Our results suggest that promoting threshold from a hyperparameter to a trainable parameter effectively addresses the issue of dead neurons during training. This leads to a more robust training algorithm, resulting in improved convergence, increased test accuracy, and a substantial reduction in the number of training epochs required to achieve viable accuracy on spatiotemporal datasets such as NMNIST, DVS128, and Spiking Heidelberg Digits (SHD), with up to 30% training speed-up and up to 2% higher accuracy on these datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com