Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches (2407.19292v1)

Published 27 Jul 2024 in cs.SE and cs.RO

Abstract: The Robot Operating System (ROS) is a popular framework and ecosystem that allows developers to build robot software systems from reusable, off-the-shelf components. Systems are often built by customizing and connecting components via configuration files. While reusable components theoretically allow rapid prototyping, ensuring proper configuration and connection is challenging, as evidenced by numerous questions on developer forums. Developers must abide to the often unchecked and unstated assumptions of individual components. Failure to do so can result in misconfigurations that are only discovered during field deployment, at which point errors may lead to unpredictable and dangerous behavior. Despite misconfigurations having been studied in the broader context of software engineering, robotics software (and ROS in particular) poses domain-specific challenges with potentially disastrous consequences. To understand and improve the reliability of ROS projects, it is critical to identify the types of misconfigurations faced by developers. To that end, we perform a study of ROS Answers, a Q&A platform, to identify and categorize misconfigurations that occur during ROS development. We then conduct a literature review to assess the coverage of these misconfigurations by existing detection techniques. In total, we find 12 high-level categories and 50 sub-categories of misconfigurations. Of these categories, 27 are not covered by existing techniques. To conclude, we discuss how to tackle those misconfigurations in future work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 23 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube