Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Regularity Analysis and High-Order Time Stepping Scheme for Quasilinear Subdiffusion (2407.19146v1)

Published 27 Jul 2024 in math.NA and cs.NA

Abstract: In this work, we investigate a quasilinear subdiffusion model which involves a fractional derivative of order $\alpha \in (0,1)$ in time and a nonlinear diffusion coefficient. First, using smoothing properties of solution operators for linear subdiffusion and a perturbation argument, we prove several pointwise-in-time regularity estimates that are useful for numerical analysis. Then we develop a high-order time stepping scheme for solving quasilinear subdiffusion, based on convolution quadrature generated by second-order backward differentiation formula with correction at the first step. Further, we establish that the convergence order of the scheme is $O(\tau{1+\alpha-\epsilon})$ without imposing any additional assumption on the regularity of the solution. The analysis relies on refined Sobolev regularity of the nonlinear perturbation remainder and smoothing properties of discrete solution operators. Several numerical experiments in two space dimensions show the sharpness of the error estimate.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.