Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Wonderful Team: Zero-Shot Physical Task Planning with Visual LLMs (2407.19094v6)

Published 26 Jul 2024 in cs.AI and cs.RO

Abstract: We introduce Wonderful Team, a multi-agent Vision LLM (VLLM) framework for executing high-level robotic planning in a zero-shot regime. In our context, zero-shot high-level planning means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description, and the VLLM outputs the sequence of actions necessary for the robot to complete the task. Unlike previous methods for high-level visual planning for robotic manipulation, our method uses VLLMs for the entire planning process, enabling a more tightly integrated loop between perception, control, and planning. As a result, Wonderful Team's performance on real-world semantic and physical planning tasks often exceeds methods that rely on separate vision systems. For example, we see an average 40% success rate improvement on VimaBench over prior methods such as NLaP, an average 30% improvement over Trajectory Generators on tasks from the Trajectory Generator paper, including drawing and wiping a plate, and an average 70% improvement over Trajectory Generators on a new set of semantic reasoning tasks including environment rearrangement with implicit linguistic constraints. We hope these results highlight the rapid improvements of VLLMs in the past year, and motivate the community to consider VLLMs as an option for some high-level robotic planning problems in the future.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.