Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Be More Real: Travel Diary Generation Using LLM Agents and Individual Profiles (2407.18932v2)

Published 10 Jul 2024 in cs.CY and cs.AI

Abstract: Human mobility is inextricably linked to social issues such as traffic congestion, energy consumption, and public health; however, privacy concerns restrict access to mobility data. Recently, research have utilized LLMs for human mobility generation, in which the challenge is how LLMs can understand individuals' mobility behavioral differences to generate realistic trajectories conforming to real world contexts. This study handles this problem by presenting an LLM agent-based framework (MobAgent) composing two phases: understanding-based mobility pattern extraction and reasoning-based trajectory generation, which enables generate more real travel diaries at urban scale, considering different individual profiles. MobAgent extracts reasons behind specific mobility trendiness and attribute influences to provide reliable patterns; infers the relationships between contextual factors and underlying motivations of mobility; and based on the patterns and the recursive reasoning process, MobAgent finally generates more authentic and personalized mobilities that reflect both individual differences and real-world constraints. We validate our framework with 0.2 million travel survey data, demonstrating its effectiveness in producing personalized and accurate travel diaries. This study highlights the capacity of LLMs to provide detailed and sophisticated understanding of human mobility through the real-world mobility data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com