Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Log-Concave Coupling for Sampling Neural Net Posteriors (2407.18802v1)

Published 26 Jul 2024 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: In this work, we present a sampling algorithm for single hidden layer neural networks. This algorithm is built upon a recursive series of Bayesian posteriors using a method we call Greedy Bayes. Sampling of the Bayesian posterior for neuron weight vectors $w$ of dimension $d$ is challenging because of its multimodality. Our algorithm to tackle this problem is based on a coupling of the posterior density for $w$ with an auxiliary random variable $\xi$. The resulting reverse conditional $w|\xi$ of neuron weights given auxiliary random variable is shown to be log concave. In the construction of the posterior distributions we provide some freedom in the choice of the prior. In particular, for Gaussian priors on $w$ with suitably small variance, the resulting marginal density of the auxiliary variable $\xi$ is proven to be strictly log concave for all dimensions $d$. For a uniform prior on the unit $\ell_1$ ball, evidence is given that the density of $\xi$ is again strictly log concave for sufficiently large $d$. The score of the marginal density of the auxiliary random variable $\xi$ is determined by an expectation over $w|\xi$ and thus can be computed by various rapidly mixing Markov Chain Monte Carlo methods. Moreover, the computation of the score of $\xi$ permits methods of sampling $\xi$ by a stochastic diffusion (Langevin dynamics) with drift function built from this score. With such dynamics, information-theoretic methods pioneered by Bakry and Emery show that accurate sampling of $\xi$ is obtained rapidly when its density is indeed strictly log-concave. After which, one more draw from $w|\xi$, produces neuron weights $w$ whose marginal distribution is from the desired posterior.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets