Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Achieving interpretable machine learning by functional decomposition of black-box models into explainable predictor effects (2407.18650v1)

Published 26 Jul 2024 in stat.ML and cs.LG

Abstract: Machine learning (ML) has seen significant growth in both popularity and importance. The high prediction accuracy of ML models is often achieved through complex black-box architectures that are difficult to interpret. This interpretability problem has been hindering the use of ML in fields like medicine, ecology and insurance, where an understanding of the inner workings of the model is paramount to ensure user acceptance and fairness. The need for interpretable ML models has boosted research in the field of interpretable machine learning (IML). Here we propose a novel approach for the functional decomposition of black-box predictions, which is considered a core concept of IML. The idea of our method is to replace the prediction function by a surrogate model consisting of simpler subfunctions. Similar to additive regression models, these functions provide insights into the direction and strength of the main feature contributions and their interactions. Our method is based on a novel concept termed stacked orthogonality, which ensures that the main effects capture as much functional behavior as possible and do not contain information explained by higher-order interactions. Unlike earlier functional IML approaches, it is neither affected by extrapolation nor by hidden feature interactions. To compute the subfunctions, we propose an algorithm based on neural additive modeling and an efficient post-hoc orthogonalization procedure.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.