Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reconstruction of geometric random graphs with the Simple algorithm (2407.18591v1)

Published 26 Jul 2024 in cs.DS and math.PR

Abstract: Graph reconstruction can efficiently detect the underlying topology of massive networks such as the Internet. Given a query oracle and a set of nodes, the goal is to obtain the edge set by performing as few queries as possible. An algorithm for graph reconstruction is the Simple algorithm (Mathieu & Zhou, 2023), which reconstructs bounded-degree graphs in $\tilde{O}(n{3/2})$ queries. We extend the use of this algorithm to the class of geometric random graphs with connection radius $r \sim nk$, with diverging average degree. We show that for this class of graphs, the query complexity is $\tilde{O}(n{2k+1})$ when k > 3/20. This query complexity is up to a polylog(n) term equal to the number of edges in the graph, which means that the reconstruction algorithm is almost edge-optimal. We also show that with only $n{1+o(1)}$ queries it is already possible to reconstruct at least 75% of the non-edges of a geometric random graph, in both the sparse and dense setting. Finally, we show that the number of queries is indeed of the same order as the number of edges on the basis of simulations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.