Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mini-Batch Gradient-Based MCMC for Decentralized Massive MIMO Detection (2407.18489v1)

Published 26 Jul 2024 in cs.IT, eess.SP, and math.IT

Abstract: Massive multiple-input multiple-output (MIMO) technology has significantly enhanced spectral and power efficiency in cellular communications and is expected to further evolve towards extra-large-scale MIMO. However, centralized processing for massive MIMO faces practical obstacles, including excessive computational complexity and a substantial volume of baseband data to be exchanged. To address these challenges, decentralized baseband processing has emerged as a promising solution. This approach involves partitioning the antenna array into clusters with dedicated computing hardware for parallel processing. In this paper, we investigate the gradient-based Markov chain Monte Carlo (MCMC) method -- an advanced MIMO detection technique known for its near-optimal performance in centralized implementation -- within the context of a decentralized baseband processing architecture. This decentralized design mitigates the computation burden at a single processing unit by utilizing computational resources in a distributed and parallel manner. Additionally, we integrate the mini-batch stochastic gradient descent method into the proposed decentralized detector, achieving remarkable performance with high efficiency. Simulation results demonstrate substantial performance gains of the proposed method over existing decentralized detectors across various scenarios. Moreover, complexity analysis reveals the advantages of the proposed decentralized strategy in terms of computation delay and interconnection bandwidth when compared to conventional centralized detectors.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com