Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AI Safety in Generative AI Large Language Models: A Survey (2407.18369v1)

Published 6 Jul 2024 in cs.CY and cs.CL

Abstract: LLM (LLMs) such as ChatGPT that exhibit generative AI capabilities are facing accelerated adoption and innovation. The increased presence of Generative AI (GAI) inevitably raises concerns about the risks and safety associated with these models. This article provides an up-to-date survey of recent trends in AI safety research of GAI-LLMs from a computer scientist's perspective: specific and technical. In this survey, we explore the background and motivation for the identified harms and risks in the context of LLMs being generative LLMs; our survey differentiates by emphasising the need for unified theories of the distinct safety challenges in the research development and applications of LLMs. We start our discussion with a concise introduction to the workings of LLMs, supported by relevant literature. Then we discuss earlier research that has pointed out the fundamental constraints of generative models, or lack of understanding thereof (e.g., performance and safety trade-offs as LLMs scale in number of parameters). We provide a sufficient coverage of LLM alignment -- delving into various approaches, contending methods and present challenges associated with aligning LLMs with human preferences. By highlighting the gaps in the literature and possible implementation oversights, our aim is to create a comprehensive analysis that provides insights for addressing AI safety in LLMs and encourages the development of aligned and secure models. We conclude our survey by discussing future directions of LLMs for AI safety, offering insights into ongoing research in this critical area.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.