Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HPAC-ML: A Programming Model for Embedding ML Surrogates in Scientific Applications (2407.18352v2)

Published 25 Jul 2024 in cs.DC

Abstract: Recent advancements in Machine Learning (ML) have substantially improved its predictive and computational abilities, offering promising opportunities for surrogate modeling in scientific applications. By accurately approximating complex functions with low computational cost, ML-based surrogates can accelerate scientific applications by replacing computationally intensive components with faster model inference. However, integrating ML models into these applications remains a significant challenge, hindering the widespread adoption of ML surrogates as an approximation technique in modern scientific computing. We propose an easy-to-use directive-based programming model that enables developers to seamlessly describe the use of ML models in scientific applications. The runtime support, as instructed by the programming model, performs data assimilation using the original algorithm and can replace the algorithm with model inference. Our evaluation across five benchmarks, testing over 5000 ML models, shows up to 83.6x speed improvements with minimal accuracy loss (as low as 0.01 RMSE).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.