Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dihedral Angle Adherence: Evaluating Protein Structure Predictions in the Absence of Experimental Data (2407.18336v1)

Published 9 Jul 2024 in q-bio.BM and cs.CE

Abstract: Determining the 3D structures of proteins is essential in understanding their behavior in the cellular environment. Computational methods of predicting protein structures have advanced, but assessing prediction accuracy remains a challenge. The traditional method, RMSD, relies on experimentally determined structures and lacks insight into improvement areas of predictions. We propose an alternative: analyzing dihedral angles, bypassing the need for the reference structure of an evaluated protein. Our method segments proteins into amino acid subsequences and searches for matches, comparing dihedral angles across numerous proteins to compute a metric using Mahalanobis distance. Evaluated on many predictions, our approach correlates with RMSD and identifies areas for prediction enhancement. This method offers a promising route for accurate protein structure prediction assessment and improvement.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.