Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Classification-Based Automatic HDL Code Generation Using LLMs (2407.18326v1)

Published 4 Jul 2024 in cs.AR and cs.AI

Abstract: While LLMs have demonstrated the ability to generate hardware description language (HDL) code for digital circuits, they still suffer from the hallucination problem, which leads to the generation of incorrect HDL code or misunderstanding of specifications. In this work, we introduce a human-expert-inspired method to mitigate the hallucination of LLMs and improve the performance in HDL code generation. We first let LLMs classify the type of the circuit based on the specifications. Then, according to the type of the circuit, we split the tasks into several sub-procedures, including information extraction and human-like design flow using Electronic Design Automation (EDA) tools. Besides, we also use a search method to mitigate the variation in code generation. Experimental results show that our method can significantly improve the functional correctness of the generated Verilog and reduce the hallucination of LLMs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.