Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MCU-MixQ: A HW/SW Co-optimized Mixed-precision Neural Network Design Framework for MCUs (2407.18267v1)

Published 17 Jul 2024 in cs.AR, cs.AI, and cs.LG

Abstract: Mixed-precision neural network (MPNN) that utilizes just enough data width for the neural network processing is an effective approach to meet the stringent resources constraints including memory and computing of MCUs. Nevertheless, there is still a lack of sub-byte and mixed-precision SIMD operations in MCU-class ISA and the limited computing capability of MCUs remains underutilized, which further aggravates the computing bound encountered in neural network processing. As a result, the benefits of MPNNs cannot be fully unleashed. In this work, we propose to pack multiple low-bitwidth arithmetic operations within a single instruction multiple data (SIMD) instructions in typical MCUs, and then develop an efficient convolution operator by exploring both the data parallelism and computing parallelism in convolution along with the proposed SIMD packing. Finally, we further leverage Neural Architecture Search (NAS) to build a HW/SW co-designed MPNN design framework, namely MCU-MixQ. This framework can optimize both the MPNN quantization and MPNN implementation efficiency, striking an optimized balance between neural network performance and accuracy. According to our experiment results, MCU-MixQ achieves 2.1$\times$ and 1.4$\times$ speedup over CMix-NN and MCUNet respectively under the same resource constraints.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: