Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MCU-MixQ: A HW/SW Co-optimized Mixed-precision Neural Network Design Framework for MCUs (2407.18267v1)

Published 17 Jul 2024 in cs.AR, cs.AI, and cs.LG

Abstract: Mixed-precision neural network (MPNN) that utilizes just enough data width for the neural network processing is an effective approach to meet the stringent resources constraints including memory and computing of MCUs. Nevertheless, there is still a lack of sub-byte and mixed-precision SIMD operations in MCU-class ISA and the limited computing capability of MCUs remains underutilized, which further aggravates the computing bound encountered in neural network processing. As a result, the benefits of MPNNs cannot be fully unleashed. In this work, we propose to pack multiple low-bitwidth arithmetic operations within a single instruction multiple data (SIMD) instructions in typical MCUs, and then develop an efficient convolution operator by exploring both the data parallelism and computing parallelism in convolution along with the proposed SIMD packing. Finally, we further leverage Neural Architecture Search (NAS) to build a HW/SW co-designed MPNN design framework, namely MCU-MixQ. This framework can optimize both the MPNN quantization and MPNN implementation efficiency, striking an optimized balance between neural network performance and accuracy. According to our experiment results, MCU-MixQ achieves 2.1$\times$ and 1.4$\times$ speedup over CMix-NN and MCUNet respectively under the same resource constraints.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com