Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Latency optimized Deep Neural Networks (DNNs): An Artificial Intelligence approach at the Edge using Multiprocessor System on Chip (MPSoC) (2407.18264v1)

Published 16 Jul 2024 in cs.AR and cs.AI

Abstract: Almost in every heavily computation-dependent application, from 6G communication systems to autonomous driving platforms, a large portion of computing should be near to the client side. Edge computing (AI at Edge) in mobile devices is one of the optimized approaches for addressing this requirement. Therefore, in this work, the possibilities and challenges of implementing a low-latency and power-optimized smart mobile system are examined. Utilizing Field Programmable Gate Array (FPGA) based solutions at the edge will lead to bandwidth-optimized designs and as a consequence can boost the computational effectiveness at a system-level deadline. Moreover, various performance aspects and implementation feasibilities of Neural Networks (NNs) on both embedded FPGA edge devices (using Xilinx Multiprocessor System on Chip (MPSoC)) and Cloud are discussed throughout this research. The main goal of this work is to demonstrate a hybrid system that uses the deep learning programmable engine developed by Xilinx Inc. as the main component of the hardware accelerator. Then based on this design, an efficient system for mobile edge computing is represented by utilizing an embedded solution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: