Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Effect of Purely Synthetic Training Data for Different Automatic Speech Recognition Architectures (2407.17997v2)

Published 25 Jul 2024 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: In this work we evaluate the utility of synthetic data for training automatic speech recognition (ASR). We use the ASR training data to train a text-to-speech (TTS) system similar to FastSpeech-2. With this TTS we reproduce the original training data, training ASR systems solely on synthetic data. For ASR, we use three different architectures, attention-based encoder-decoder, hybrid deep neural network hidden Markov model and a Gaussian mixture hidden Markov model, showing the different sensitivity of the models to synthetic data generation. In order to extend previous work, we present a number of ablation studies on the effectiveness of synthetic vs. real training data for ASR. In particular we focus on how the gap between training on synthetic and real data changes by varying the speaker embedding or by scaling the model size. For the latter we show that the TTS models generalize well, even when training scores indicate overfitting.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.