Papers
Topics
Authors
Recent
Search
2000 character limit reached

Investigating and Mitigating Barren Plateaus in Variational Quantum Circuits: A Survey

Published 25 Jul 2024 in quant-ph and cs.LG | (2407.17706v2)

Abstract: In recent years, variational quantum circuits (VQCs) have been widely explored to advance quantum circuits against classic models on various domains, such as quantum chemistry and quantum machine learning. Similar to classic machine-learning models, VQCs can be trained through various optimization approaches, such as gradient-based or gradient-free methods. However, when employing gradient-based methods, the gradient variance of VQCs may dramatically vanish as the number of qubits or layers increases. This issue, a.k.a. Barren Plateaus (BPs), seriously hinders the scaling of VQCs on large datasets. To mitigate the barren plateaus, extensive efforts have been devoted to tackling this issue through diverse strategies. In this survey, we conduct a systematic literature review of recent works from both investigation and mitigation perspectives. Furthermore, we propose a new taxonomy to categorize most existing mitigation strategies into five groups and introduce them in detail. Also, we compare the concurrent survey papers about BPs. Finally, we provide insightful discussion on future directions for BPs.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.