Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

BLAZE: Cross-Language and Cross-Project Bug Localization via Dynamic Chunking and Hard Example Learning (2407.17631v3)

Published 24 Jul 2024 in cs.SE, cs.IR, and cs.LG

Abstract: Software bugs require developers to exert significant effort to identify and resolve them, often consuming about one-third of their time. Bug localization, the process of pinpointing the exact source code files that need modification, is crucial in reducing this effort. Existing bug localization tools, typically reliant on deep learning techniques, face limitations in cross-project applicability and effectiveness in multi-language environments. Recent advancements with LLMs offer detailed representations for bug localization. However, they encounter challenges with limited context windows and mapping accuracy. To address these issues, we propose BLAZE, an approach that employs dynamic chunking and hard example learning. First, BLAZE dynamically segments source code to minimize continuity loss. Then, BLAZE fine-tunes a GPT-based model using challenging bug cases, in order to enhance cross-project and cross-language bug localization. To support the capability of BLAZE, we create the BEETLEBOX dataset, which comprises 26,321 bugs from 29 large and thriving open-source projects across five different programming languages (Java, C++, Python, Go, and JavaScript). Our evaluations of BLAZE on three benchmark datasets BEETLEBOX, SWE-Bench, and Ye et al. demonstrate substantial improvements compared to six state-of-the-art baselines. Specifically, BLAZE achieves up to an increase of 120% in Top 1 accuracy, 144% in Mean Average Precision (MAP), and 100% in Mean Reciprocal Rank (MRR). An extensive ablation study confirms the contributions of our pipeline components to the overall performance enhancement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.