Papers
Topics
Authors
Recent
2000 character limit reached

Improved symbolic drum style classification with grammar-based hierarchical representations (2407.17536v1)

Published 24 Jul 2024 in cs.SD, cs.MM, and eess.AS

Abstract: Deep learning models have become a critical tool for analysis and classification of musical data. These models operate either on the audio signal, e.g. waveform or spectrogram, or on a symbolic representation, such as MIDI. In the latter, musical information is often reduced to basic features, i.e. durations, pitches and velocities. Most existing works then rely on generic tokenization strategies from classical natural language processing, or matrix representations, e.g. piano roll. In this work, we evaluate how enriched representations of symbolic data can impact deep models, i.e. Transformers and RNN, for music style classification. In particular, we examine representations that explicitly incorporate musical information implicitly present in MIDI-like encodings, such as rhythmic organization, and show that they outperform generic tokenization strategies. We introduce a new tree-based representation of MIDI data built upon a context-free musical grammar. We show that this grammar representation accurately encodes high-level rhythmic information and outperforms existing encodings on the GrooveMIDI Dataset for drumming style classification, while being more compact and parameter-efficient.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.